
Sharma

& Badoga International Journal on Emerging Technologies 11(5): 705-712(2020) 705

International Journal on Emerging Technologies 11(5): 705-712(2020)
ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Data Encryption Standard Algorithm in Symmetric Key Cryptography over Finite
Field F2

Arun Kumar Sharma
1
 and Nikhlesh Kumar Badoga

 2

1
Department of Computer Science & Engineering, NIT Hamirpur, India.

2
Department of Computer Science & Engineering, Thapar Institute of Engineering and Technology, India.

 (Corresponding author: Arun Kumar Sharma)
(Received 22 October 2020, Revised 02 December 2020, Accepted 29 December 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Cryptography plays a vital role in information technology and communication process.
Cryptography ensures security of information. Security that ranged from ATM cards, digital passwords and
electronic commerce, all rely heavily on cryptography for security. The capability and efficiency of
mathematical algorithm determines the level of security that is provided to data. The main and fundamental
objective of cryptography is to enable secure communication over an insecure channel. We focus briefly on
cryptography and on Data Encryption Standard (DES) Algorithm in detail.

Keywords: Data Encryption Standard, Symmetric Key Cryptography, Encryption, Decryption, Confidentiality,
Authenticity, Integrity, Finite Field.

I. INTRODUCTION

The encryption algorithm that is mostly used in the word
is Data Encryption Standard Algorithm [4]. The two words
that have been synonymous for most of the time are
"secret code making" and DES. A solicitation for crypto
systems was published by NIST(National institute of
Standards and Technology)in federal register on May 15,
1973. This ultimately led to the adoption of the Data
Encryption Standard [3]. DES was the modification of
earlier system Lucifer and was developed at IBM. The
publication of DES was first done in the Federal Register
on March 17, 1975. After a good amount of public
discussion, the adoption of DES as a standard of
“unclassified” applications was carried on January 15,
1977. The durability of DES as a standard was doubted
initially and was sought to be applicable only for 10-15
years but it proved to be much more durable. It was
initially expected that DES would only be used as a
standard for 10-15 years; however, it proved to be much
more durable. Every 5 years approximately it was
reviewed to check any intricacies corresponding to its
adoption as a standard. Appropriate recommendation
based on proper filtering of the content is very essential,
see [11, 13]. DES works on binary numbers that
corresponds to 0 or 1, which the digital computers are
common to. The culmination of four bits makes up base
16 number or hexadecimal number. For e.g.
Hexadecimal number "A" is equal to Binary“1010”.
The 64-bitmessage groups are encrypted by DES, that is
the same as 16 hexadecimal numbers. If a certain case
arises where the message size exceeds or falls short of
64 bits and is not even the multiple of 64 then. Certain
padding schemes are used which mainly comprises of

adding certain bits to fit it into the required criteria.
Generally, the message is made of addition of 0, so that
the message falls into the required criteria condition. For
encryption, DES uses keys, which are 64 bits long or 16
hexadecimal numbers. The DES algorithm ignores every
8

th
 key bit, which makes the effective key size to be of

56-bits [9].

II. DATA ENCRYPTION STANDARD ALGORITHM

DES is a block cipher and it converts the plaintext blocks
of a given size (64-bits) and returns the same size cipher
text blocks [1, 5-8]. Thus the maximum possible
permutations of 64 bits results in 2�� , each of which can
be either 0 or 1. Each block comprises of a left half block
Land a right half block R each of 32 bit which in total
makes the 64 bits.
The key size of each 64 bits block is of 56 bits as each 8

th

bit in the key is ignored but they are actually stored as 64
bits block with every 8

th
 bit being inactive. The keys are

actually stored as being 64-bits long, but every 8
th

bit in
the key is not used. Data Encryption Standard Algorithm,
[12, 14] follows various steps as described below:
Step-1. Keys Generation:
The permutation of the 64-bits key is done as described
in Table 1, (��). Since the value of the second entry is
"49", which further means that�∗ which is the permuted
key contains the 2

nd
 bit same as is the 49

th
 bit of the

original key. The 9�� bit of theoriginal key becomes the

seventh bit of the permuted key. The 12�� bit of the
original key is the second last bit of thepermuted key,
which further leads to involving of only 56 bits in the
original key. Total 16 sub keys are created in this pattern.

Table 1: ��	 �.

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

et

Sharma

& Badoga International Journal on Emerging Technologies 11(5): 705-712(2020) 706

Now, the key is split in two left and right halves,��and ��,
with each half containing 28 bits. With ��and �� defined,
we now create sixteen blocks ��and ��, where 1≤n≤16.
���� and ���� leads to the formation of new pair of
blocks Cn and Dn, respectively, corresponding to values

which ranges from n= 1, 2, ..., 16, by using the schedule
that pertains to "left shifts" of previous block. Left shift is
done, by moving each bit to the left by one place, except
first bit, which is cycled to the end of the block.

Table 2.

Iteration Number 1 2 3 4 5 6 7 8

Number of Left Shift 1 1 2 2 2 2 2 2

Iteration Number 9 10 11 12 13 14 15 16

Number of Left Shift 1 2 2 2 2 2 2 1

This further means, for example, �� and �� further leads
to formation of ��and �� respectively, by two left shifts,
and���and ��� leading to the formation of ���and ���,
respectively, by one left shift. The rotation of the bits by
one place to the left signifies a single left shift, so that

after one left shift the bits in the 28 positions are the bits
that were previously in positions 2, 3,..., 28, 1.
We now form the keys ��, for 1≤n≤16, by the application
of the following permutation Table 3 to each of the
concatenated pairs ���� . Each pair has 56 bits,
but ��� only uses 48 of these.

Table 3: ���.

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 25 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

Therefore, the first bit of ��is the 14
th
 bit of ����, the

second bit the 17
th
, and so on, ending with the 48th bit of

��being the 32
th
 bit of ����.

Step-2. Encryption Procedure for the Original
Message:
(I) Initial Permutation: The message data M which is of
64 bits has an initial permutation IP. The rearrangement
of the bits take place keeping in consideration Table 4,
where the new bits arrangement with respect to their
initial order is shown in Table – 4. The 58��bit of M now
corresponds to the first IP bit. The 50

th
 bit of M becomes

the second bit of IP. The 7
th
 bit of Mis the last bit of IP.

Table 4: Initial Permutation.

58 50 42 34 26 18 10 02

60 52 44 36 28 20 12 04

62 54 46 38 30 22 14 06

64 56 48 40 32 24 16 08

57 49 41 33 25 17 09 01

59 51 43 35 27 19 11 03

61 53 45 37 29 21 13 05

63 55 47 39 31 23 15 07

(II) Next, the permuted block IP is divided in to a left half
�� which is of 32 bits, and a right half �that comprises of
32 bits. We carry similarly through 16 iterations, for
1≤n≤16, making use of function f that operates on two

blocks in addition to data block of size 32 bits and a
�! key of 48 bits which makes a block of 32 bits. Let +
denote XOR addition, (bit-by-bit addition modulo 2). Then
for n going from 1 to 16, we evaluate

�! = !�	
and
 ! = �!�	 + $(!�	, �!).

Thus the final block of %��&��is obtained for n = 16.That
is, for every iteration, the 32 right bits of the previous
result is taken and are made the 32 left bits of the current
step. For the 32 bits which are to the right taken in the
present step, we XOR the 32 left bits of the previous step
by calculating f. Each block of !�	 is expanded from
32-bits to 48-bits in order to calculate f. Selection table is
used that repeats some of the bits in !�	. The function
E is obtained by using the selection Table. Thus E(!�)
contains a block for input which is of 32-bit, and an output
block which is of 48 bit. Let E be such that the output
which is of 48bits, is composed of 8 blocks each of which
contains 6 bits, and the output is obtained by making use
of Table 5 by selecting the inputs in order. The bits which
are in positions 32, 1 and 2 of !�	 , make the first 3 bits
of E(!�)while the last 2-bits which are in positions 32
and 1 respectively makes the last 2 bits of E(!�). Next,
for calculating f, the output of E(!�) is XOR-ed with the
key �!:�!+ E(!�).

Table 5: E-bit Selection Table.

32 01 02 03 04 05

04 05 06 07 08 09

08 09 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 01

The calculation of the function f is not finished yet. To this
point, the expansion of !�	is done ranging from 32 bits
to 48 bits, making use of selection table, and further the
result is XORed with the key �!. Now we have 48-bits,

which further can be decoded as with six bits in every one
of the 8 groups.
(III) Each group comprising six bits is used to describe
the addresses in tables known as "S boxes", see also

Sharma

& Badoga International Journal on Emerging Technologies 11(5): 705-712(2020) 707

[2,10, 15, 16]. S box is used to signify the address
composed of each group of 6 bits. The address will be
used to denote the 4-bits-number. The original 6-bits are
replaced by 4-bits number. The net result is that the eight
groups of 6-bits are transformed into eight groups of 4
bits (the 4-bits outputs from the S boxes) takes place
from the 8 groups of 6 bits which makes the total of
32-bits. The 48-bits previous result is written, in the form:
��+ E(&���) = '�'(')'�'�'�'*'+,

where each ,- is a group of 48-bits. Further we make
calculation of
.�('�) .(('() .)(')) .�('�) .�('�) .�('�) .*('*) .+('+),

where i-th S box output is referred to as /-(,-).
Each functions /	, /�,..., /0, takes a input which makes
a 6 bit block and yields an output of a block comprising of
4 bits. This description is shown in the following Table 6.

Table 6: /	 Box.

Row Column

 (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

(0) 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

(1) 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

(2) 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

(3) 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

(IV) Let /	 be the function defined in the table given and
B be a block of 6-bits, then /	(B) can be determined as
follows: A number in the decimal range 0 to 3 (or binary
00 to 11) is used to define first and last bits of B represent
in base 2. Let I denote that number. Let B represent the 4
bits which are in middle in base 2 a number that denotes
the decimal range from 0 to 15 (binary 0000 to 1111). Let
j be that number. The i-th row and j-th column represent
the number by making use of look up table. The block
which is of 4 bit is used to represent the number ranging
from 0 to 15 uniquely.

Therefore, for the given input B/	(B) of /	corresponds to
the output. For example, for the given input block B =
011011 the first bit that represents "0" and the last bit that
gives "1" giving 01 as the row. This is represented in row
1. The four bits to the middle are denoted as "1101",
which describes the binary equivalent of decimal 13, so
the column denotes column number 13. In row 1, and
column13 appears 5. This helps in determining the
output; 5 is binary 0101, so that the output is 0101. Hence
/	(011011) = 0101.Thus the functions /	,...,/0can be
described using the table as following:

Table 7: /�Box.

(0) 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

(1) 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

(2) 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

(3) 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

Table 8: /1 Box.

(0) 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

(1) 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

(2) 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

(3) 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Table 9: /2 Box.
(0) 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

(1) 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

(2) 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

(3) 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

Table 10: /3 Box.

(0) 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

(1) 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

(2) 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

(3) 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

Table 11: /4 Box.

(0) 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

(1) 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

(2) 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

(3) 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

Table 12: /5 Box.

(0) 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

(1) 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

(2) 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

(3) 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

Table 13: /0 Box.

(0) 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

(1) 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

(2) 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

(3) 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Sharma

& Badoga International Journal on Emerging Technologies 11(5): 705-712(2020) 708

The S-boxes that is used to represent the output is
denoted by f (!�	, �!). Furthermore, using the values
of �!�	and !�	for the values of n ranging from ! =

	, �, … 	3, we compute ! = �!�	 + f (!�	 , �!) .

Furthermore towards end of the sixteenth round, we have

the blocks �	4 and 	4. The order comprising of the two
blocks are then reversed into the 64-bit block 	4 �	4.

(V) (Now the final permutation 7��	 to the 64-bit
block 	4�	4 , defined by the following Table 14, is
applied:

Table 14: Final Permutation.

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

That is, bit 40 of the output containing the algorithm of the
pre output block corresponds to its first bit, bit 8 as its
second bit, and so on, pre output block that corresponds
to bit 25 is the last bit of the output.
Step-3. Decryption Procedure of the Cipher
Message:
Decryption mainly denotes the inverse of encryption,
following the steps that are in synchronization as above,

but order corresponding to the subkeys are applied are
reversed.
(III) Illustration:
Let the message to be sent is: HIMACHAL and key used
for encryption and decryption is UNIVERSE. Using
ASCII, we write the given message in hexadecimal form
and binary digit as follows:

Table 15.

H I M A C H A L

48 69 6D 61 63 68 61 6C

0100 1000 0110 1001 0110 1101 0110 0001 0110 0011 0110 1000 0110 0001 0110 1100

Therefore, the given message becomes
M= 0100 1000 0110 1001 0110 1101 0110 0001 0110
0011 0110 1000 0110 0001 0110 1100,
which is 64 –bit plain text.
Step-1. Keys Generation:
We write the key K in terms of binary digits as
K=0101 0101 0110 1110 0110 1001 0111 0110 0110
0101 0111 0010 0111 0011 0110 0101.
Using ��	 Table, the 64-bits key is permuted and it
becomes 56-bits key as
�∗ =0000000 0111111 1111111 1100110 0110101
0100110 1100000 1101001,
which is written in two parts as
�� =0000000 0111111 1111111 1100110
��=0110101 0100110 1100000 1101001.
Now, we create the pairs �� and �� , 1 ≤ 9 ≤ 16 from
the previous pairs ���� and ���� . From the original pair
of ��and �� using the shifts given in Keys Generation of
Data Encryption Standard Algorithm on page no. 12 and
we obtain
��=0000000 1111111 1111111 0001100

��=1101010 10011001 1000001 1010010.
 �(= 0000001 1111111 1111110 0001100
 �(= 1010101 0011011 0000011 0100101.

�)= 0000111 1111111 1111000 1100000
 �)= 010100 1101100 0001101 0010110.
 ��= 0011111 1111111 1100011 0000000
 ��=1010011 0110000 0110100 1011010.

��=1111111 1111111 0001100 0000000
��= 1001101 1000001 1010010 1101010.

 ��=1111111 1111100 0110000 0000011

 ��= 0110110 0000110 1001011 0101010.

�*=1111111 1110001 1000000 0001111
 �*=1011000 0011010 0101101 0101001.

�+=1111111 1000110 0000000 0111111
 �+=1100000 1101001 0110101 0100110.

�;=1111111 0001100 0000000 1111111
 �;=1000001 1010010 1101010 1001101.

���=1111100 0110000 0000011 1111111
 ���=0000110 1001011 0101010 0110110.

���= 1110001 1000000 0001111 1111111
 ���= 0011010 0101101 0101001 1011000.

 ��(= 10000110 0000000 0111111 1111111
 ��(= 1101001 0110101 0100110 1100000.

��)= 0011000 0000001 1111111 1111110
 ��)= 0100101 1010101 0011011 0000011.

���= 1100000 0000111 1111111 1111000
 ���= 0010110 1010100 1101100 0001101.

���= 0000000 0011111 1111111 1100011
 ���=1011010 1010011 0110000 0110100.

���= 0000000 0111111 1111111 1000110
 ���= 0110101 0100110 1100000 1101001.
Now, to form the first key, we have
���� = 0000000 1111111 1111111 00011000000000
1111111 1111111 0001100.
We use ��� Table to change the given 56-bits key into
48-bits and corresponding key becomes
�� =111000 001011 011011 10010 010001 110000
011010 011111.
For the second key, we have
�(�(=0000001 1111111 1111110 0011000 1010101
0011011 0000011 0100101.
Using���Table, the given 56-bits key is changed into
48-bits, so corresponding key becomes
�(=111100 001001 011001 111110 101000 001011
011100 010010.

Sharma

& Badoga International Journal on Emerging Technologies 11(5): 705-712(2020) 709

For the third key, we have
�)�) = 0000111 1111111 1111000 1100000 1010100
1101100 0001101 0010110.
After using ��� Table, the given 56-bits key can be
changed into 48-bits, so corresponding key becomes
�) =111001 001101 101000 110010 011110 010010
011000 100110.
For the fourth key, we have
���� =0011111 1111111 1100011 0000000 1010011
0110000 0110100 1011010.
From ��� Table, the given 56-bits key can be changed
into 48-bits, so corresponding key becomes
�� =101001 101111 001101 110110 011111 000100
100011 011010.
 For the fifth key, we have
���� =1111111 1111111 0001100 0000000 1001101
1000001 1010010 1101010.
After using ��� table, the given 56-bits key can be
changed into 48-bits, so corresponding key becomes
�� =101011 100101 011101 010011 000001 001111
000001 011110.
For the sixth key, we have
���� =1111111 1111100 0110000 0000011 0110110
0000110 0001011 0101010.
��� Table changes the56-bits key into 48-bits, so
corresponding key becomes
�� = 011011 110101 001101 111001 101001 111011
010011 100000.
For the seventh key, we have
�*�* =1111111 1110001 1000000 0001111 1011000
0011010 0101101 0101001.
After using ���Table, the given 56-bits key can be
changed into 48-bits, so corresponding key becomes
�* =100011 111101 000111 011001 101010 001000
111101 10001.
For the eighth key, we have
�+�+ =1111111 1000110 0000000 0111111 1100000
1101001 0110101 0100110.
��� Tablechanges the56-bits key into 48-bits, the
corresponding key becomes
�+ = 000111 110100 101111 011011 000111 101100
111000 010110
For the ninth key, we have
�;�; =1111111 0001100 0000000 1111111 1000000
1010010 1101010 1001101.
Using ��� Table, the given 56-bits key can be changed
into 48-bits, the corresponding key becomes
�; = 001111 110100 101111 011001 100000 000001
100101 101110.
For the tenth key, we have
������=11111100 0110000 0000011 1111111 0000110
1001011 0101010 0110110.
��� Table changes the56-bits key into 48-bits, so
corresponding key becomes
���= 000111 110011 100110 001101 110001 001011
101010 110100.
For the eleventh key, we have
������=1110001 1000000 0001111 1111111 0011010
0101101 0101001 1011000.
After using ��� Table, the given 56-bits key can be
changed into 48-bits, so corresponding key becomes
��� =000110 110010 110011 011101 011100 010000
111011 111001.
For the twelfth key, we have
��(��(=1000011 0000000 0111111 1111111 1101001
0110101 0100110 1100000.

��� Tablechanges the56-bits key into 48-bits, the
corresponding key becomes
��(=010111 010110 110010 101100 000110 111000
100000 011011.
For the thirteenth key, we have
��)��)=0011000 0000001 1111111 1111110 0100101
1010101 0011011 0000011.
Using ��� Table, the given 56-bits key can be changed
into 48-bits, so corresponding key becomes
��) =110100 101010 110110 101100 010011 110111
010100 110100.
For the fourteenth key, we have
������=1100000 0000111 1111111 1111000 1100000
0000111 1111111 1111000.
��� Tablechanges the56-bits key into 48-bits, so
corresponding key becomes
��� =110110 001010 111000 100111 001010 010010
100111 100100.
For the fifteenth key, we have
������=0000000 0011111 1111111 1100011 1011010
1010011 0110000 0110100.
Using ��� Table, the given 56–bits key can be changed
into 48-bits, so corresponding key becomes
��� =111000 011011 111000 101110 111000 001100
100010 010111.
For the sixteenth key, we have
������= 0000000 0111111 1111111 1000110 0110101
0100110 1100000 1101001.
After using ���Table, the given 56–bits key can be
changed into 48-bits, the corresponding key becomes
 ���=111000 001011 011010 101110 101100 111010
1000111 001000 .
Step-2.Encryption Procedure for the Original
Message:
The initial permutation is applied making use of the
Table-3 to the plaintext M given previously and get
M=1111 1111 0000 1000 0100 0101 0001 0000 0000
1111 1110 1010 0111 0001 0000Now, we further make
use of 16 rounds for encryption. First, we divide M into
two parts having 32 bits each as
 %�=1111 1111 0000 0000 1000 0100
0101 1110
and
 &�=0000 0000 1111 1110 1010 0111 0001 0000.
The following function is used for encryption in each
round,
%�= &��� ,
 &� = %��� + <=(&��� , ��)
and
 <=(&���, ��)= ��+ E(&���),
where E(&���) means expanding the size of &���from
32-bits to 48-bits and �� is already of 48-bits. Also, we
use S-boxes under this function to compress the output
of��+ E(&���), because we need only 32-bits to XORed
with %��� , whereas output of ��+ E(&���) is of 48 bits so
we compress it.
For first round, we take 9 = 1 and get,
 %�=R0
and
&� = %� + <(&� , ��).
 Therefore,
 %�= 1111 1111 0000 0000 1000 0100 0101 1110.
Also,
&� =0000 00001111 1110 1010 0111 0001 0000
is of 32-bits using E-bit Table, we expand 32-bits into
48-bit and get

Sharma

& Badoga International Journal on Emerging Technologies 11(5): 705-712(2020) 710

D (&�) =000000 000001 011111 111101 010100 001110
100010 100000.
Since �� is of 48-bits and after expansion &�
becomesD (&�) with 48-bits. Therefore,
�� + D (&�) =111000 001010 000100 011011 000101
111110 111000 111111.
Let
�� + D(&�) = '�'(')'�'�'�'*'+,
where
 '�= 111000
 '(= 001010
 ')= 000100
 '�=011011
'�=000101
'�=111110
'*=111000
'+=111111.
Now, using S-boxes given on page no.16, 17, 18 and 19,
we have
.�('�) = .� (111000)
=2

nd
 row and 12

th
 column in S1

=03
=0011,
.(('() = .((001010)
 = 0

th
 row and 5

th
 column in S2

 =11
=1011,

.)(')) = .) (000100)
=0

th
 row and 2

nd
 column in S3

=09
 =1001,
.�('�) = .� (011011)

=1
st
 row and 13

th
 column in S4

=10
=1010,
.�('�) = .� (000101)
= 1

ST
 row and 2

nd
 column in S5

 = 02
 =0010,
 .�('�) = .� (111110)

=2
nd

row and 15
th
 column in S6

 =06
 =0110,
 .*('*) = .* (111000)

= 1
st
 row and 12

th
 column in S7

 =00
 =0000,
.+('+) = .+ (111111)
=3

rd
 row and 15

th
 column in S8

 =11
 =1011.
Therefore, the required output from S-boxes becomes
<(&� , ��) of 32- bits and have
< (&� , ��)=0011 1011 1001 1010 0010 0110 0000 1011.
Now,
 %� + < (&� , ��) =1100 0100 1001 1010 1010 0010 0101
0101.
Hence,
 &�=1100 0100 1001 1010 1010 0010 0101
0101
and
 %�=0000 0000 1111 1110 1010 0111 0001
0000.
For the second round, we take 9 = 2 and we get,
%(= &�

and

 &(= %� + <(&� , E().
From the previous round, we have
 %(=1100 0100 1001 1010 1010 0010 0101
0101.
Also,
R2 =1100 0100 1001 1010 1010 0010 0101 0101
is of 32-bits. Using E-bit table, we expand 32-bits into
48-bits and get
D(&�)=111000 001001 010011 110101 010100 000100
001010 101011
and
 �(+ D(&�)=000100 000000 001010 001011 111100
001111 010110 111001.
Since�(+ D(&�) is of 48-bits and L1 is of 32-bits. Before
adding these two, we firstly compress�(+ D(&�) using
Sboxes given on page no. 16, 17, 18 and19 respectively.
Let
 �(+ D(&�)='�'(')'�'�'�'*'+ ,
where
'�= 000100
 '(= 000000
')= 001010
'�= 001011
 '�= 111100
'�= 001111
'* = 010110
 '+= 111001.
Since
< (&� , �()=Si (Bi),1 ≤ i ≤ 8;
now,using S-boxes given on page no.16,17 and 18, we
have
.�('�) = .� (000100)
=0

th
 row and 2

nd
column in .1 =13

=1101.
.(('() = .((000000)
 = 0

th
 row and 0

th
 column in S2

=15
=1111.
.)(')) = .) (001010)
=0

th
 row and 5

th
 column in S3

 =03
 =0011.
.�('�) = .� (001011)
=1

st
 row and 5

th
 column in S4

 =15
=1111.
.�('�) = .� (111100)
= 2

nd
 row and 14

th
 column in S5

= 00
 =0000.
.�('�)= .� (001111)
=1

st
row and 7

th
 column in S6

 =05
 =0101.
 .*('*) = .* (010110)
= 0

th
 row and 11

th
 column in S

 =07
 =0111.
 .+('+)= .+ (111001)
=3

rd
 row and 12

th
 column in S8

 =03
 =0011.
So the required output from S-boxes becomes
 <(&� , �()=1101 1111 0011 1111 0000 0101 0111
0011.
Therefore,

Sharma

& Badoga International Journal on Emerging Technologies 11(5): 705-712(2020) 711

 %� + <(&� , �()=1101 1111 1100 0001 1010
0010 0110 0011.
Hence,
&(=1101 1111 1100 0001 1010 0010 0110 0011
and
%(=1100 0100 1001 1010 1010 0010 0101 0101.
Using the similar procedure for9 = 3, … 15, we get the
required outputs.
Now, for the round 9 = 16, we have
%��= &��
and
 &�� = %�� + <(&��, E��);
From previous round,

L16=1011 0001 0110 1001 0000 0101 1100
0011.
From E-bit table, we expand 32-bits into 48-bits and get

 &�� = 1011 0001 0110 1001 0000 0101
1100 0011,
then
D(&��) =110110 100010 101101 010010 100000 000111
111000 000111.
Also,
 ��� + D(&��) =001110 101001 110111 111100 001100
111101 011111 001111.
 ��� + D(&��)) is of 48-bits and L16 is of 32-bits. Adding
these two, we firstly compressed ��� + D(&��) using
S-boxes given on page no.16, 17 and 18 respectively.
Let
��� + D(&��) ='�'(')'�'�'�'*'+,
where
 '�= 001110
 '(= 101001
 ')= 110111
 '�= 111100
 '�= 001100
'�= 111101
'* = 011111
 '+= 001111.
Since,
< (&�� , ���) = Si('G),1 ≤ H ≤ 8 ;
now,using S-boxes given on page no.16,17, 18 and 19,
we have
.�('�) = .�(001110)
 =0

th
row and 7

th
column in S1

 =08
=1000.
.(('() = .((101001)
= 3

rd
 row and 4

th
 column in S2

=03
=0011.
.)(')) = .)(110111)
=3

rd
 row and 11

rd
 column in S3

 =03
 =0011.
.�('�) =.� (111100)
=2

nd
 row and 14

th
 column in S4

=08
=1000.
.�(B5) = .� (001100)
= 0

th
 row and 6

th
 column in S5

= 11
=1011.
.�('�) =.� (111101)
=3

rd
 row and 14

th
 column in S6

 =08
 =1000.
 .*('*) =.* (011111)

=1
st
 row and 15

th
 column in S7

 =06
 =0110.
 .+(B8) = .+ (001111)
=1

st
 row and 7

th
 column in S8

 =04
 =0100.
So the required output from S-boxes becomes
< (&�� , ���) =1000 0011 0011 1000 1011 1000 0110
0100.
Therefore,
L15+ < (&�� , ���) =0011 1001 0101 1100 1110 0101
1000 0001.
Hence,
R16= 0011 1001 0101 1100 1110 0101 1000 0001
and
L16= 1011 0001 0110 1001 0000 0101 1100 0011.
So, the corresponding cipher text after 16 round
becomes
L16R16 =1011 0001 0110 1001 0000 0101 1100 0011
1001 0101 1100 1110 0101 1000 0001.
Now, using the Final Permutation Table -13, the
corresponding cipher text becomes
C=11011111 00000001 00101100 10110000 11100000
11011000 00111001 01001011.
In hexadecimal it is written as
13 15 01 02 12 11 00 14 00 13 08 39 04 11.
Therefore, the cipher text is
DC3NAKSOHSTXDC2DC1NULLDC3BS9EOTDC1
which is sent through public channels.
Step-3. Decryption Procedure of the Cipher
Message:
Decryption algorithm is the inverse of the encryption
algorithm. The output of encryption algorithm becomes
input in the decryption algorithm. Therefore, the given
cipher message becomes
J=1101 1111 0000 0001 0010 1100 1011 0000 1110 0000
1101 1000 0011 1001 0100 1011.

Using Initial Permutation Table, J becomes

J = 1011 0001 0110 1001 0000 0101 1100 0011 0011 1001
0101 1100 1110 0101 1000 0001.
We use the functions

&��� = %�
and

%��� = &� + <(%�, E�).
For the first round, we take 9 = 16 and get

&�� = %��

and

 %�� = &�� + <(%�� , E��).

We divide J into two half parts, which are given by
%��=1011 0001 0110 1001 0000 0101 1100 0011
and
&��= 0011 1001 0101 1100 1110 0101 1000 0001.
Since

 &�� = %��,
therefore,

 &�� = 1011 0001 0110 1001 0000 0011
1100 0011.
We use same key

��� = 111000 001011 011010 101110 101100 111010
100111 001000
as used for encryption of the original message.
Now, using E-bit Table, we have

D(%��) = 110110 100010 101101 010010 100000 000111
111000 000111.
Therefore,

��� + D(%��) = 001110 101001 110111 111100 001100
111101 011111 001111,

Sharma

& Badoga International Journal on Emerging Technologies 11(5): 705-712(2020) 712

which is same as in fifteenth round of encryption. Using S-
boxes as in encryption of original message, we have
 <(%��, ���) =1000 0011 0011 1000 1011 1000 0110 0100
and

&�� + <(%��, ���) =1011 1010 0110 0100 0101 1101 1110
0101.
Therefore,

 %��=1011 1010 0110 0100 0101 1101 1110 0101
and

&��= 1011 0001 0110 1001 0000 0011 1100 0011.
For the second round, we take 9 = 15 and get

 &�� = %��

and

%��=&�� + <(%�� , ���).
From the previous round, we have
&��=1011 1010 0110 0100 0101 1101 1110 0101.
Here the key is

��� =111000 011011 111000 101110 111000 001100
100010 010111.
From E-bit Table, we have

D(%��) =110111 110100 001100 001000 001011 111011
111100 001011.
Therefore ,

��� + D(%��) =001111 101111 110100 100110 110011
110111 011110 011100,
which is same as in fourteenth round of encryption. Using S-
boxes as in encryption, we have
<(%��, ���) =1010 0010 0010 0000 1111 0111 0001 1000
and

 &��+ <(%��, ���)= 0001 0011 0100 1001 1111 0100 1101
1111.
Hence

%��= 0001 0011 0100 1001 1111 0100 1101 1111
and

&��=1011 1010 0110 0100 0101 1101 1110 0101.
Using the similar procedure for9 = 14,13 … 2, we get the
required outputs.

For the round sixteenth 9 = 1, we get
 &� = %�

and
 %�= &� + <(%�, E�).
From the previous round, we have

 &� =0000 0000 1111 1110 1010 0111 0001 0000.
Here the key is

 �� =111000 001011 011011 100110 010001 110000
011010 011111.
Using E-bit Table, we have

%� =0000 0000 1111 1110 1010 0111 0001 0000
and

D(%�) = 000000 000001 011111 111101 010100 001110
100010 100000.
Therefore,

��+D(%�) =111000 001010 000100 011011 000101 111110
111000 111111
which is same as in first round of encryption. We use S-
boxes as in encryption and get

<(%�, ��)=0011 1011 1001 1010 0010 0110 0000 1011
and

&� + <(%�, ��) =1111 1111 0000 0000 1000 0100 0101
1110.
Therefore,

&� = 0000 0000 1111 1110 1010 0111 0001 0000
and

%�=1111 1111 0000 0000 1000 0100 0101 1110.
So, the required output is written as
J = %�&� = 1111 1111 0000 0000 1000 0100 0101 1110
0000 0000 1111 1110 1010 0111 0001 0000.
Using Final Permutation Table, we get required message as

J =0100 1000 0110 1001 0110 1101 0110 0001 0110 0011
0110 1000 0110 0001 0110 1100.
Now, we write the above message in hexadecimals as
48 69 6D 61 63 68 61 6C.
The required plaintext after using ASCII is
M = HIMACHAL.

III. CONCLUSION

Data Encryption Standard is the important technique of
processing the data in Symmetric key cryptography. We
discussed in detail all the levels of Data Encryption
Standards and focused on the mathematical algorithm
which provides the security to the data.

REFERENCES

[1]. Buchmann, J. A.(2004). Introduction to Cryptography, New
York.
[2]. Carlet, C., Goubin, L., Prouff, E., Quisquater, M.,& Rivain M.
(2012). Higher-Order Masking Schemes for S-Boxes. Fast
Software Encryption FSE 2012, Lecture Notes in Computer
Science, 7549, 366-384.
[3]. Coppersmith, D. (1994). The Data Encryption Standard
(DES) and its strength against attacks.IBM J. of Research and
Development, 38(3), 243-250.
[4]. Data Encryption Standard, Federal Information Processing
Standard (FIPS) Publication 46, National Bureau of Standards,
U.S. Department of Commerce, Washington D.C. (1977).
[5]. Grabbe J. Orlin. The DES Algorithm Illustrated, 'Laissez'
Faire City Times, 2(8). Homepage:http://www. aci.

net/kalliste/homepage. Html.
[6]. Kenekayoro Patrick T. (2010). The Data Encryption
Standard thirty four years later: An overview, African J. of Maths.
& Computer Science Research, 3(10), 267-269.
[7]. Menezes, A. J., Paul, C. Van Oorschot,& Vanstone, S. A.
(1997). Handbook of Applied Cryptography, CRC Press, Boca
Raton.
[8]. Meyer C. H.,& Matyas S. M., Cryptography: A New
Dimension in Computer Data Security. John Wiley & Sons, New
York, (1982).
[9]. Phan, R. C. W. (2007). Reducing the exhaustive key search
of the Data Encryption Standard (DES), Computer Standards &
Interfaces, 29, 528-530.
[10]. Schenier B. (1996). Applied Cryptography, Second Edition,
John Wiley &Sons, New York.
[11] Sharma, A. K. (2018). Content-Based Filtering in Movie

Recommendation. International Journal of Electrical, Electronics

and Computer Engineering, 7(2): 106-109.

[12] Sharma, A. K. (2019). Design and Mathematical Structure of

Cryptographic Hash Function SHA-512. International Journal of

Theoretical & Applied Sciences, 11(2): 41-47.

[13] Sharma, A. K. (2019). Safety Application in Android.

International Journal on Emerging Technologies, 10(1): 234-00.

[14] Sharma, A. K., & Badoga, N. K. (2020). Digital Signatures

Using RSA Public Key Cryptosystem Scheme. International

Journal of Theoretical & Applied Sciences, 12(1): 37-42.

[15]. Stalling, W. (2012). Cryptography and Network Security,

Pearson,

[16]. Stinson, D. R.(1995). Cryptography: Theory and Practice,
CRC Press, Boca Raton.

How to cite this article: Sharma, A. K., and Badoga, N. K. (2020). Data Encryption Standard Algorithm in Symmetric
Key Cryptography over Finite Field F2. International Journal on Emerging Technologies, 11(5): 705–712.

